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Abstract—The process of heat transfer to a two-phase mixture of well-dispersed subliming particles and
vapor, flowing over a heated surface, is analyzed. It is shown by a laminar boundary layer analysis that,
when the surface-area per unit volume of the particle (or solid) phase is large enough, the phase change
dominates the heat-transfer process and hastens the development of the thermal boundary layer. Under
these conditions, the thermal boundary-layer thickness not only becomes uniform a short distance down-
stream from the starting point, but also is substantially less than it would be were the particle phase absent.
For such systems, the equations describing the heat-transfer process can be considerably simplified and, if
the physical properties of both phases are uniform, a remarkably simple solution results. For systems in
which the physical properties are not uniform, a solution involving integration across the boundary layer
is developed. The solutions are applicable to developing, as well as fully developed, laminar boundary
layers over a flat plate; the solutions also approximate conditions in flow through a tube, provided that the
tube radius is large compared to the thermal boundary-layer thickness. The predictions of this theoretical
analysis agree satisfactorily with experimental results. With slight modification, the same approach may
possibly be applicable for turbulent flow in the boundary layer.

NOMENCLATURE H, specific enthalpy of solid [J/g] ;
surface area of particle [cm?]; H,, specific enthalpy of vapor [J/g];
lumped parameter defined by equa- H,, specific enthalpy of vapor at satura-
tion (38) [cm?]; tion temperature [J/g] ;
specific heat of vapor at constant k. thermal conductivity of vapor at
pressure [J/g°K]; vapor temperature [W/cm°K] ;
average particle diameter [cm] ; kyps thermal conductivity of vapor for
specific internal energy of particle particle heat transfer [W/cm°K] ;
[J/el; k..  thermal conductivity of vapor for wall
vector drag force on average particle heat transfer [W/cm°K] ;

[dyn]; I, distance from the plate to the outside
acceleration due to gravity [cm/s?]; of the mechanical boundary layer
rate of sublimation per unit-volume [em];

[g/cm3s]; m, average particle mass [g];

height above an arbitrary datum N, average number of particles per unit
[cm]; volume [1/cm3];

particle  heat-transfer  coefficient Npup,  particle Nusselt number (h,D,/k,,);
[W/cm2°K]; 3 pressure [dyn/cm?];

wall heat-transfer coefficient (g,/I),
[W/em?*°K];
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rate of heat transfer to a particle
(W/s];
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Gy heat-transfer rate per unit area at
wall [W/cm?];

S, shape factor for particle surface area ;

t, real time [s];

T, average temperature of the particle
[°’K];

T, saturation temperature [°K];

T, vapor temperature [°K] ;

T, tube-wall temperature [°K];

u, velocity parallel to wall [cm/s] ;

U, free-stream velocity [cm/s] ;

v, velocity perpendicular to wall [cm/s] ;

A/ vector velocity of solid [cm/s] ;

Y, vector velocity of vapor [cm/s] ;

X, distance parallel to wall [cm] ;

¥, distance perpendicular to wall [cm].

Greek symbols

B, drag coefficient for average particle
le/s];

I, wall-minus-saturation  temperature
difference (T,, — T) [°’K];

O fluid mechanical boundary-layer
thickness [cm] ;

I» thermal boundary-layer thickness
[em];

g, 8¢/0m>

n, V/dy;

& Y/Om;

0, vapor-minus saturation temperature
difference (T, — T,) [°’K];

A, heat of vaporization or sublimation
/el;

U vapor viscosity at vapor temperature
(g/cms];

Uows  Vapor viscosity related to wall tem-
perature [g/cm s] ;

Po density of mixture [g/cm?];

Pps average mass of particles per unit-

volume of mixture [g/cm?];
Pp specific density of particles [g/cm?] ;

[ average mass of vapor per unit-
volume of mixture [g/cm3];

P specific density of vapor [g/cm?] ;

¥, stress tensor excluding pressure term

[dyn/em?];
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Ty shear stress at wall [dyn/cm?];

o, rate of change of phase coefficient
[g/cm®s°K];

o rate of change of phase coefficient at
wall [g/cm?s°K];

v, conduction heat-transfer rate
[W/em?];

INTRODUCTION

HEAT transfer by forced convection to a mixture
of evaporating drops and vapor at pressures
above the triplet point, or to a mixture of
subliming particles and vapor at pressures
below the triple point, occurs in many systems,
such as in mist flow, in drying processes, and in
venting cryogenic liquids to outer space. The
original purpose of this investigation was to
learn more about the heat-transfer character-
istics of cryogenic propellants vented to outer
space [1] and to explain quantitatively the ex-
perimental results of Jones et al. [2]. Although
illustrative comments below will be directed to
a cryogenic mixture of subliming particles and
vapor, the analytical approach used is quite
general, and its results should be applicable to
other engineering systems involving heat trans-
fer by forced convection to dispersed two-phase
mixtures.

Forced convection heat transfer to a gas-
particle mixture has been studied by Farbar and
Depew [3], Tien and Quan [4], Edelman [5]
and others. In general, their work shows that
the presence of the solid phase enhances the wall
heat-transfer coefficient when the particle dia-
meters are less than about 0-01 cm. Change of
phase, however, has not been considered in any
previous study.

FORMULATION OF THE PROBLEM

To formulate the problem mathematically,
the conservation equations for bpth phases must
be considered. If, however, all factors influencing
the process were incorporated in the analysis,
the problem would become mathematically
intractable. On the other hand, in an uncommon
system such as the one treated here, it is not
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prudent to discard a priori a term representing
the effect of one of the contributing mechanisms,
unless an order-of-magnitude analysis shows
that its influence is insignificant. Reference [6]
presents the details of the calculations under-
lying the decision whether or not to include
terms in the mathematical formulation of the
problem. For cryogenic mixtures, the calcula-
tions result in the simplifications listed in
Table 1. (For brevity, these calculations are
excluded from this paper. For other systems,
however, it may be desirable to review the order
of magnitude of certain terms.) To avoid un-
necessary complications, initial simplifications 1
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through 9, whose justification appeared a
posteriori almost trivial for cryogenic mixtures,
are introduced at this stage.

A thermodynamic function is, in general,
discontinuous across a phase boundary. Since
presently available mathematical techniques
can handle only continuous functions, it was
necessary to formulate the problem in terms of
“bulk”™ properties, i.e. average properties that
take into account the presence of both phases.
In conventional terms, this means that the
conservation equations are derived by postu-
lating a control-volume for the mixture con-
taining such a large number of particles that (1)

Table 1. List of simplifications

Initial simplifications
. Two phases are initially in thermal equilibrium.
. Radiation heat-transfer is negligible.

. Lift forces on the particles are negligible.
. Electrostatic forces are negligible.
. Specific density of the particle phase is constant.

OO0~ N AN

Boundary layer simplifications
10. The process is steady-state.
11. Viscous heating is negligible.

. Statistical fluctuations in the particle phase density may be averaged.
. Rotational kinetic energy of the particle phase is negligible.
. Rotational momentum of the particle phase is negligible.

. Specific density of the particle phase is much greater than specific density of the vapor phase.

12. Relative motion between phases is negligible, except as it affects particle Nusselt number and particle diffusion.

13. Gravitational effects are negligible.

14. The mixture behaves as a Newtonian fluid, with viscosity equal to that of the vapor.
15. The surface of the particle is at local saturation temperature.

16. Temperature gradients in the particle are negligible.
17. Specific heats of the particle and vapor are constant,
18. Flow is two dimensional.

19. Boundary-layer approximations are valid.

20. Pressure gradients are negligible.

21. Vapor viscosity and thermal-conductivity are constant.

Integral solution simplifications
22. Average particle size is uniform.
23. Average particle number-density is uniform.
24. Free-stream velocity gradients are negligible.
25. Changes in bulk densities are negligible.
26. Effects of free-stream turbulence are negligible.
27. Particle-wall interactions are negligible.

28. Polynomial approximations of velocity and temperature profiles in boundary layer are valid (necessary for solution).
29. Two phases are in thermal equilibrium outside the thermal boundary-layer.
30. Thermal and fluid-mechanical boundary-layers start at the same point.

31. Particle Nusselt number is constant.

32. Particle Nusselt number is not affected by mass transfer.
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particle properties may be treated as continuous
functions and (2) statistical fluctuations can be
averaged. At the same time, the volume can
conceptually be made arbitrarily small so that
mathematical derivatives exist. This approach
is actually only an extension of the assumption
usually made in continuum mechanics in which
all physical properties are treated as continuous
functions while, in reality, any physical material
consists of particles having discrete energy levels.
A schematic diagram illustrating the specific
process treated in this study, as well as some of
the symbols used in the analysis below, are
shown in Fig. 1.

Average maoss of particles =m g,
rlicies

equivaient number of
per unit volume =N/cm

Specific density of particles=g; g/&m?

bulk density of particles
{i.e. mass of particles per unit
volume of mixturelp, g/em®
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pp = Nm. If it is assumed that the equivalent
average number of particles, as well as the
average net mass, is conserved, the conservation-
of-mass equations for particle and vapor can be
written in the form

(Solid)
op, Dm
£y +V.ppVP—N—D_E-=O {1)
and
(Vapor)
ap, Dm
—{3;-+V.p,,vv+N—D—;—-0. (2)
)

a
- Drag on particle
F=B(3,~%,)
o
vv
o -]

Specific density of vapor =5, g/cm3
bulk density of vapor

{i.e.mass of vapor per unit
volume of mixture}=p, g/em3

FiG. 1. Schematic of particle-vapor flow, with definition of some symbols.

Conservation of mass

Let N(r, t) be the equivalent average number
of particles per unit volume. The qualification
“equivalent” is used to indicate that particle
identities are not lost. For example, if two
particles collide and stick together, then the
number of particles is still counted as two.
Similarly, if a particle completely sublimes, it is
still counted as a particle, but its mass is zero.
The function N is related to the average bulk
density of the solid phase p,# t), and the
average mass of a particle m according to

Conservation of momentum

The forces between the two phases result from
their relative motion. To evaluate these forces,
it is convenient to define an average particle-
drag coefficient f according to the equation

2 () = B, — v) = mg¥h ()

Expanding the substantial derivative in the fore-
going equation and using the definition of p,
given above yields the conservation-of-momen-
tum equation for the solid phase
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(Solid)

Dv,

Po Pty pN ——ﬁN(v,,—vp)+pngh=0

4

It is possible, as shown in detail in [6], to
derive a similar conservation-of-momentum
equation for the mixture. When the conserva-
tion-of-momentum equation for the solid or
particle phase is subtracted from it, the con-
servation of momentum for the vapor phase is
found to be

(Vapor)
Dy, Dm
Popy ~ VN T BNV, — V)

+Vp—-V.t*+gp,Vh=0. 5)

Conservation of energy

If we define an average particle heat transfer
coefficient h, and an average specific particle
density g, for the solid phase and assume that
each particle is sufficiently regular so that its
surface area is proportional to its volume to
the two-thirds power, as in a sphere, the surface
area of a particle is

%
A, = (36m)ts (ﬁ"—) , (6)

where s is a particle-shape factor equal to unity
for a sphere. The rate of heat transfer between a
particle and the surrounding vapor is given by

0, = (36n)* s (g)ih,(n . O

P,

Since heat transfer to a particle causes sublima-
tion, as well as a change in the internal energy
of the solid, conservation of energy demands that

Dm DE m
AE— D”+(36)s(;;) h(T,— T,) = 0.
(8)

The internal energy term can be replaced by the
enthalpy of the solid, because the solid density
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is uniform; thus, extending equation (8) to N
particles per-unit volume yields the conservation-
of-energy equation for the solid phase
(Solid)
Dm DH 6s p
IN=—— py 1P
ot Dt "D,p

pp

p(’I;) - Tp) = 0
%)

where the term 6s/D, corresponds to the ratio
of particle area to volume. The conservation
equation for the vapor is derived by obtaining
a conservation equation for the mixture and
subtracting from it equation (9). After some re-
arrangement, this yields

{Vapor)

Dm
N—E{%‘(V‘;.Vl} - vp'vp) - (Hv - Hvs)}

6s p
+p 5ok = T+ p

pp

DH, Dp

v Dt Dt

— Nf(v, = v,).(v, — v,)) — 7*. Vy,

- V(*,VT,) = 0. (10)
It should be noted that the conservation equa-
tions are coupled with the change-of-phase
term N(dm/dt). Moreover, although no relative-
motion terms appear in the equations because
their order of magnitude is negligible, the value
of h, (the particle heat-transfer coefficient) still
depends on the relative motion between the two
phases.

BOUNDARY-LAYER APPROXIMATIONS

Numerical solutions of equations (1), (2), (4),
(5), 9), and (10) would be complicated and
require prohibitive computer time. Instead,
analytical solutions will be formulated by means
of the boundary-layer integral method [8-10].
To use this method simplifications 10 through
21 in Table 1 are introduced, and equations (1),
(2), (4, (5), (9), and (10) simplify respectively to
the following boundary-layer forms:
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Conservation of mass

(Solid)
0 0
é;(ppu) + é;(ppv) -G= 0
and
(Vapor)

0 0
—(p) + —-(p0) + G = 0.
ox oy

Conservation of momentum

(Solid)
u ou
- i =0
Pl o + ppv 3 + uG
and
(Vapor)
ou ou 0*u
— — = — = =0,
pvu ax + pvv ay uG :uayz

Conservation of energy
(Solid)

6s
22T, — T + 4G = 0

pPp

Uniform distribution
of particles in the
0 Y direction
o o
o]
o

thickness
Thermal

e boundary-layer
o thickness

(11)

(12)

(13)

(14)

(15)

—i
Free stream
velocity =¢/
temperature =7,

N

° Fluid-mechanical
boundary ~layer
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and
(Vapor)
0T, T,  6sp,
PuCpl ax_ + Pulpl ay + E;ﬁp hp(T: - T;)
o,
— T, ~T)G — k,— = 1
T, ~ 1) e (16)

The coupling term between equations (11)
through (16) is G, the rate of sublimation per
unit volume. This term is given explicitly by
Equation (15).

To proceed with the integral method and
integrate across the boundary layers, simplifica-
tions 22 through 32 are introduced. The process
can then be visualized as shown schematically
in Fig. 2. In this figure the vertical scale has been
greatly expanded. For the cryogenic mixture
under consideration here, order-of-magnitude
dimensions are 50 cm for the horizontal length,
0-1 cm for the thermal boundary-layer thickness,
025 c¢cm for the mechanical boundary-layer
thickness, 0-003 c¢cm for the particle diameter,
and 003 cm for the distance between particle
centers. Thus, the thermal boundary-layer thick-
ness is about three times greater than the
distance between particles.

Temperature
profile

particle

___Temperature of
=7

0 —

.‘
[
3

plate

—
Fla?/-/

Uniform
heat flux, g,

FIG. 2. Boundary-layer model.
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Integral equations

With Leibnitz’s rule for differentiation of
integrals, equation (12) can be partially inte-
grated with respect to y to give

1 14

]
Rgpvudy + p()) + dey =0. (17
’ 0 0
Also, with the addition of the two conserva-
tion-of-mass equations [equations (11) and (12)]
and with partial integration, one can verify that

l

igptu dy + po()) =0, (18)

0x

where [ is the perpendicular distance from the
flat plate to some point outside both the fluid-
mechanical and thermal-boundary layers.

Two additional equations may be obtained
from the sum of equations (11) and (12) and
also from equation (12) by multiplying these
equations by u and c,T,, respectively, and
integrating. This procedure results in

1 !

du
J‘p,uady + '(ptudv =0
0

0

(19)

and

4 !
ou

[pvcvat'z a dy + j‘pvcpv’I:J dv

0 0

1

+ jc,,,,T,',G dy = 0. (20)
0
Adding and integrating the conservation-of-
momentum equations [equations (13) and (14)]
gives
i i

ou
sp'ufdy + pUdl) — j‘ptu dv
X
0 0

ou

= —ﬂuwa (21)

y=0
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Substituting from equations (18) and (19) for
the second and third terms in equation (21), and
changing the limits to O to J,, (since the integrals
from 4, to | are zero) yields the momentum
integral equation

m

ou i, , U
—a—xj Py
0

Tw = Upw a_y

y=0

22)
For conservation of energy, adding and inte-
grating equations (15) and (16) yields
1 1

a7,
spucpvua—dy + pvcpvv(l) I, - jpucpvn dv
0 0

1 1

- le dy — jcp.,(n - T)Gdy = q,. (23)
0 0

Substituting from equations (17) and (20) for
the second and third terms in equation (23), and
changing the limits to 0 to J, (since the integrals
from 4, to I are zero) yields the energy integral
equation

Ot

&t

d

qw = ggj pvcpuue dy + j. d’lo dY3 (24)
0 0

where

_16spy, _ NsnDih,
AD,p, ?
The term ¢ is the coefficient of rate of change-
of-phase, i.e: the rate of change-of-phase per unit

volume and per unit of temperature difference
between the vapor and particles.

¢ (25)

POLYNOMIAL APPROXIMATIONS

The choice of polynomials with which to
approximate the velocity and temperature pro-
files is to some extent arbitrary. Fourth-degree
polynomials satisfy the boundary conditions
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very well, but a relatively complicated solution
ensues in which the coefficients of the tempera-
ture polynomials are functions of the thermal
boundary-layer thickness. However, if third-
degree polynomials are used, one obtains
remarkably simple solutions.

The boundary conditions to be satisfied are:

W0) =0, o0)=0, usy=U, 2 =o
dy om
M) = I, 66)=0,2% o,
dy 5
’ T
y? |s, ’

these conditions yield polynomial approxima-
tions for the velocity and temperature distri-
butions,

(Velocity)
and
(Temperature)
%-1—3114—3112—113 7

where ¢ = y/,, and n = y/é,.

From equation (27) the heat-transfer co-
efficient is related to the thermal boundary-
layer thickness according to the relation

Gw _ 3kow

hy=F = 3 (28)
which shows that a solution for &, also yields a
direct solution for h,. Subsututing the poly-
nomial approximation for velocity [equation
(26)] in the momentum integral equation [equa-
tion (22)] results in

9,

3U. @ , (3¢ &
zg;ﬂvw"‘as‘th (‘2__—2_

X (1—-%:5—+

N

)dy. (29)
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Performing the indicated operations and
replacing the partial derivative by a total
derivative gives

ds,, 140 Fow
dx 135 o, U

The velocity and temperature polynomial
approximations [equations (26) and (27)] can
be substituted in the energy integral equation
[equation (24)] to yield

(30)

3¢

0
a =5 Spv s B8 — )38 (1 — 3y

3k,
3
5ﬂ
2 _ 3 w
+ 3y n)dy + S 3,
0
+ 3% — n3)dy. (31

Performing the indicated operations, dividing
by q,, and replacing the partial derivative by a
total derivative gives

penlU d [ (3 1N 8302
6k, dx {M(zo @0° ) t 12k,
(32)
where
J,

If the thermal boundary-layer thickness is less
than the fluid-mechanical boundary-layer thick-
ness it may be assumed that { < 1; then

3

cz<—

20 (34)

Dropping the negligible term in equation (32)
and using the chain rule for differentiation
finally gives

. by 0 o 10 0
dx ~ 35,dx 3 pcpwUd2 9 pc, U™

(35
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It is evident from equations (30) and (35) that
the gradients of the boundary layers are in-
determinate at x = 0 because J,(0) = 0; thus
numerical integration cannot be started at
x =0, Use of L’Hospital’s rule, however,
shows that, when x — 0, the fourth term in
equation (35) goes to zero, whereas the other
three terms go to infinity. Also, if one neglects
variations in viscosity near x = 0, equation (30)
can be integrated to obtain &, as

280 pyip% ¥

Om = a3 pU) °

x—0. (36)

Substituting é,, from equation (36) and dé,,/dx
from equation (30) into equation (35) gives

ds, 14, x*
a——g;'f‘AzB?, x—>0, (37)
where
k u,, *
A, = 61.6 —2— 2 38
2 pplU pU G8)

Equation (37)isa form of Bernoulli’s equation,
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and can be reduced to a linear ordinary-
differential equation by forming the derivative of
83/x4.

Integration then yields for small values of x

= ¥}34,), (39)

Equations (36) and (39) can now be used to
obtain values of §,, and J, approaching x = 0.
These values of §,, and J, serve as starting values
for numerical integration of equations (30) and
(35).

x— 0.

SOLUTIONS

Numerical solutions of equations (30), (35),
(36) and (39) to determine the shape and relative
magnitudes of 4, and §, were obtained by
Simpson [6] using the Adams—Moulton pre-
dictor—corrector method; a typical solution is
shown in Fig. 3. The thermal boundary-layer
thickness becomes almost constant a few centi-
meters from the start of the boundary layers.
(The slight rate of growth of the thermal bound-
ary layer appears to have been caused in this
case by the incorporation in the integration
procedure of variations of fluid properties along

200 018
Wall temperoture by
Iao_mtegratlon solution dous
~~Wall temperature by
asymptotic solution
160 —Ho-14 ¢
(¥4
« \Fluid—mgchaniml boundary -
° 140} loyer thickness by 012 .
integration solution 1 @
;
2 120H —0:10 ©
o \Thermal boundary-layer £
;‘; thickness by integration solution
E 1o00f} o-08 @
- k3
> Wall heat-transfer g
2 s rate = 0-413 W /cm2 —o-06 S
Saturgtion °
temperature S
60 Ho-04 &
40 -10-02
] 1 ] L1 ] 1 ] 0
2GO 10 20 30 40 50

Distance from start

of boundary layers, cm

F1G. 3. Typical integration-solution for nitrogen.
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the boundary layer.) This suggests that the first
term (dd,/dx) in equation (35) is negligible for
large values of x.

The integration solution also shows that
8, € 9, for large values of x. Consequently, the
second term in equation (35) can be expected
to be negligible for large values of x.

Equating the third and fourth terms in equa-
tion (35) to zero yields the asymptotic solution.
It can easily be verified that the terms 6, p,, ¢,
and U cancel and

(40)

Substituting the results of equation (40) and
the definition of ¢ from equation (25) into
equation (28) and using the definition of the
particle Nusselt number (Ny,, = h,D,/k,,) gives

1 (9sp, d
=—\|== 10. 41
hw Dp (2 ﬁp NNupkvwkvp> ’ x > ( )

Note that the particle Nusselt number asymp-
totically approaches 2:0 as the relative motion
between the phases goes to zero [8]. The
asymptotic limit of the particle Nusselt number
of 2:0 for zero relative motion between phases
seems reasonable since the Nusselt number for a
sphere in pure conduction can be calculated to
be 2:0.

Numerical values of the heat-transfer co-
efficient at the wall calculated using the integra-
tion and the asymptotic solutions were com-
pared by Simpson [6] and found to differ by
less than one per cent for x greater than 10 cm.
This implies, for the cases studied, the validity
of the assumptions that the first and second
terms in equation (35) are negligible for x > 10;
it also implies that the thermal boundary layer
rapidly becomes fully developed, i.e. in about
five tube diameters.

The absence of 8, and U in the asymptotic
solution suggests that convection heat transfer
is not an important factor when the thermal
boundary layer is fully developed. Thus, the

A. U. SIMPSON, K. D. TIMMERHAUS, F. KREITH and M. C. JONES

mechanism should correspond closely with that
of heat transfer to a stagnant mixture. A stagnant
mixture is defined as having zero velocity
parallel to the wall, but also, due to generation of
vapor, having its interface move perpendicular
to the wall. Partial derivatives with respect to
time do not appear in the integration and
asymptotic solutions, since steady-state con-
ditions exist. Thus, in order that the stagnant-
model solution can correspond with the inte-
gration and asymptotic solutions, steady-state
conditions must be imposed on the stagnant
model. This corresponds to a physical situation
in which a large proportion of the heat trans-
ferred to the stagnant mixture is absorbed by
the change in phase, only a small quantity of
heat goes to raise the temperature of the vapor
and its rate of increase may be neglected. From
equations (2) and (10), the stagnant model is
described in two dimensions by the following

relationships:
% = — p,,cp,,vg—g — (A + c,0), (43)
and

Because equations (42), (43) and (44) are less
complicated than those leading to the integra-
tion and asymptotic solutions, it is feasible to
include in the analysis the variation of physical
properties with temperature across the boundary
layers. If, however, the simplifications used for
the integration and asymptotic solutions are
applied to the stagnant model, then integration
of equation (43) yields

OS¢

qy = — S d’(Md)’,

where é, is now the distance from the wall to

(43)
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the nearest point in the mixture at which the
vaporisessentially at the saturation temperature.

The boundary conditions and temperature
polynomial profile for the integration and
asymptotic solutions may also be applied to the
stagnant model by substituting equation (27)
into equation (45) to eliminate 6. Integration of
the resulting equation yields solutions identical
to the asymptotic solutions, i.e. equations (40)
and (41). This shows that, if the same approxi-
mations are introduced in both cases, the
asymptotic and stagnant-model solutions are
identical. One can, therefore, conclude (1) that
in the fully developed thermal boundary layer,
conduction and convection perpendicular to the
wall are the major modes of heat transfer, and
(2) that convection heat transfer due to motion
parallel to the wall is insignificant. Furthermore,
inspection of equation (45) reveals that all of the
heat transferred from the wall to the fluid is
absorbed by the change in phase.

In the preceding analysis, the fluid properties
were assumed uniform across the boundary
layer. Equations (42)-{44), however, can be
solved numerically with fluid properties evalu-
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ated at the local vapor temperature at each step
of the integration. The boundary conditions
for the numerical calculations are then

U(O) =0, w(O) = —quw 0(5t) =0,
dy
il = oI (A + c,0).
Figure 4 shows a typical comparison of the
temperature profiles across the boundary layer
for the stagnant (with variable properties) and
the asymptotic solutions. In this case the thermal
boundary layer was fully developed, and the
integration and asymptoticsolutions were almost
identical. Fluid properties for the asymptotic
solution were evaluated at the arithmetic mean
of the wall and saturation temperatures. Maxi-
mum difference in the vapor temperatures
predicted by the two methods is about 15 per
cent of the wall-minus-saturation temperature
difference; the wall heat-transfer coefficient
according to the stagnant solutionis about 15 per
cent less than that predicted by the asymptotic
solution.
Results of experimental work performed at

75 o7
Vapor temperature by asymptotic
and integration solutions;
temperature profile approximated NE
| by third-degree polynomial and o6 ~©
50 fiud properties assumed constant 0-6 }
across thermal boundary-layer
125p -Ho5 &
& 5
° -
D
Vapor temperature by dqa @
Py 100 stagnant-mode! solution; 0-4 5
5 quasi steady -state conditions f
£ /assumedf. bu}flmdf groperﬁes =
= vary as function of temperature
& 75 Y peratur Jo-3 £
£ i c
s /Iferufuon 30 kS
— Qo
~ 50 \Sa?urafion Thermal boundary—layer 4oz @
2 temperature thickness by os_ympfofic ° S
S =56-8 °K solution=0-0975 cm ©
Conduction heat-transfer rate
25+ by asymptotic and integration #0"
solutions Conduction heat-transfer
_~"rate by stagnant model
I L | y - —t $ A d
0 0-02 0-04 0-06 0-08 010 [XF3 o-14 [+ 018 0-2"1)
Distance from wall, cm

Fi1G. 4. Typical boundary-layer profiles for nitrogen for a particle Nusselt number of 2-4, shape
factor of 1-6, and dia. ~ 18 pm.
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the National Bureau of Standards, Boulder,
Colorado, have been compared with the inte-
gration, asymptotic, and stagnant-model solu-
tions [6]. Comparisons of experimental wall
heat-transfer coefficients with those calculated
by means of the asymptotic solution are shown
in Figs. 5 and 6 for nitrogen and hydrogen,
respectively. Each individual point on Figs. 5
and 6 represents an experimental run. The
ranges of key experimental variables are given
in Table 2.

The solutions presented in this study, while
giving good order of magnitude agreement with
experimental results, are not able to account
for a trend with wall temperature. The most
likely explanation of this is that with increasing
wall temperature the particle surface area per
unit volume adjacent to the wall is reduced below
that which pertains in the free stream. A com-
plete discussion of this and full account of
experimental results will be contained in another
paper [10].

Asymptotic ~ over —experimental
heat - transfer coefficient ratio
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3 . il
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Experimental wall temperature. °K

F1G. 5. Heat-transter ratio vs. wall temperature at 56 cm
from orifice for nitrogen for a particle Nusselt number of
2-4, shape factor of 1-6, and diameter ~ 18 um. Each in-

- dividual point represents an experimental run with nitrogen.

The ranges of key variables for the runs are given in Table 2.

| |

Experimental wall temperature, °K

FiG. 6. Heat-transfer ratio vs. wall temperature at 41 cm
from orifice for hydrogen for a particle Nusselt number of
2-4, shape factor of 17, and diameter ~37 pm. Each in-
dividual point represents an experimental run with hydrogen.
The ranges of key variables for the runs are given in Table 2.
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Table 2. Range of experimental variables

Nitrogen Hydrogen
Variable
Min. Max. Min. Max.
Mixture flow rate, g/s 2:66 465 0-79 1:17
Pressure in tube, mm Hg 7-5 463 9-0 252
Wall heat flux, W/cm? 0-105 0672 0115 1-267

For a rigorous demonstration of the validity
of the solutions for a specific system, it is necess-
ary to justify each of the simplifications listed
in Table 1 by order-of-magnitude analyses. A
less rigorous but simpler method is to calculate
the wall heat-transfer coefficient for the vapor
alone and compare it with the asymptotic
solution. If the asymptotic solution yields a
wall heat-transfer coefficient significantly greater
{e.g. a factor of two or more) than that for the
vapor alone, then change-of-phase dominates
the heat-transfer process, and the solutions
presented here would most likely provide
reasonable results.

In general, the solutions, discussion and
conclusions apply to laminar boundary layers.
If, however free-stream turbulence is significant,
particles from the free stream tend to diffuse
into the boundary layer. It is believed for such
turbulent boundary layers the solutions pre-
sented above may still be applicable, but will
tend to underpredict the wall heat transfer
coefficient.

CONCLUSIONS
The analyses and forms of the solutions
discussed in this paper are summarized in the
following conclusions:

1. Thethermal boundary layer rapidly reaches
an almost constant value and the wall
heat-transfer coefficient is considerably
greater for a mixture of subliming particles
and vapor than for the vapor alone.

2. When the thermal boundary layer becomes

fully developed, essentially all of the heat
transferred from the wall to the mixture
of subliming particles and vaporis absorbed
by the change in phase. The reason for this
simple energy balance is that, although
heat transfer also raises the temperature
of the generated vapor from the saturation
temperature to thelocal vapor temperature,
convection heat transfer away from the
wallby the generated vaporexactly balances
the heat absorbed by the generated vapor;
thus, the two terms cancel and do not
appear in the solutions.

. The dominant modes of heat transfer

in the fully developed thermal boundary
layer are conduction and convection away
from the wall ; convection heat transfer due
to motion parallel to the wall is not
significant.

. The wall heat-transfer coefficient in the

fully developed thermal boundary layer
is directly proportional to the surface area
of the particles and, therefore, inversely
proportional to particle size for a given
particle bulk density.

. In the fully developed thermal boundary

layer the local heat-transfer characteristics
depend on the local fluid properties and
do not involve the history of the process
up to that point. Thus, even though fluid
properties in planes parallel to the wall
were assumed to be uniform in the develop-
ment of the solutions, some variation of
properties should not affect the results
significantly.
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Résumé—On analyse le processus de transport de chaleur vers un mélange & deux phases de particules
bien dispersées et en train de se sublimer et de vapeur s’écoulant sur une surface chauffée. On montre par
une analyse du type couche limite que, lorsque la surface par unité de volume de la phase particulaire
{ou solide) est assez grande, le changement de phase domine le processus de transport de chaleur et hate
le développement de la couche limite thermique. Sous ces conditions, non seulement I’épaisseur de la
couche limite thermique devient uniforme & une courte distance en aval du point de départ mais également
est considérablement moindre qu’elle devrait étre si la phase particulaire était absente. Pour de tels systémes,
les équations décrivant le processus de transport de chaleur peuvent étre considérablement simplifiées
et, si les propriétés physiques des deux phases sont uniformes, il en résulte une solution remarquablement
simple. Pour des systémes dans lesquels les propriétés physiques ne sont pas uniformes, on expose une
solution impliquant une intégration & travers la couche limite. Les solutions sont applicables & des couches
limites laminaires sur une plaque plane, en train de s’établir aussi bien qu’a celles entiérement établies;
les solutions s’approchent aussi des conditions de I’écoulement & travers un tube, pourvu que le rayon du
tube soit grand par rapport 4 P’épaisseur de la couche limite thermique. Les prévisions de cette analyse
théorique sont en accord satisfaisant avec les résultats expérimentaux. La méme méthode peut étre applicable
avec une légére modification & ’écoulement turbulent dans la couche limite.

Zusammenfassung—Der Wirmeiibergang von einer beheizten Oberfliche an ein Zweiphasengemisch aus
gut verteilten sublimierenden Teilchen und Dampf wird analysiert. Es wird mit Hilfe laminarer Grenz-
schichtanalyse gezeigt, dass bei geniigend grosser Oberfliche pro Einheitsvolumen des Teilchens (oder
Festkorpers) die Phaseninderung den Wirmeiibergangsvorgang bestimmt und die Entwicklung der
thermischen Grenzschicht beschleunigt. Unter diesen Umstinden wird die Dicke der thermischen
Grenzschicht in geringer Entfernung stromabwirts vom Ausgangspunkt nicht nur gleichformig, sondern
sie ist auch wesentlich geringer als bei fehlender Festphase. Fiir solche Systeme konnen die Gleichungen
fiir den Warmeiibergang stark vereinfacht werden und bei einheitlichen Stoffwerten der beiden Phasen
ergibt sich eine sehr einfache Lésung. Fiir Systeme in welchen die physikalischen Eigenschaften nicht
einheitlich sind, wird eine Lésung mit einer Integration iiber die Grenzschicht entwickelt. Die Losungen
lassen sich anwenden, sowohl auf sich ausbildende als auch auf voll ausgebildete laminare Grenzschichten
an einer ebenen Platte ; die Losungen gelten angendhert auch fiir Rohrstrdmungen unter der Voraussetzung,
dass der Rohrradius gross gegen die thermische Grenzschichtdicke ist. Die theoretischen Berechnungen
stimmen zufriedenstellend mit den experimentellen Ergebnissen iiberein. Mit geringen Anderungen
kénnte méglicherweise die Methode auch auf turbulente Strémung in der Grenzschicht angewandt werden.
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Anvoranma—IIpoBenen anamus nponecca Tennoo0MeHa NpHM o0TeKAHMH HArpeToil IOBepX-
HOCTH AByX(asHOU cMechl0 TOHKOOUCIEPCHEIX CyOaumupyomux yactun u napa. IIpu ananuse
JIAaMUHAPHOTO HOrPAHMYHOIO CJIOA IOKA3aHO, YTO, KOTHA MJIOMAAb TOBEPXHOCTH HA eXUHHUILY
oGbemMa 9acTu, (M TBepAoi (asH) FOCTATOYHO BeJIUKa, PasoBble IpeBpallleHUA MPeodIafaloT
Haj ImpoueccaMu Tenxoo6MeHa X YCKOPAIOT Pa3sBUTHE TEIIOBOTO IIOIPAHMYHOrO CJIOA. B 3THX
YCIOBUAX TOJIIMHA TEIJIOBOTO HOTPAHMYHOTO CIIOA CTAHOBUTCH NMOCTOAHHON HA HeGOIbLIOM
PACCTOAHUM 110 TeUEHUI0 OT HAYAJIBHOM TOYKHU, MPH YeM BTOT CJI0M 3HAUHTEIBHO TOHBIIE, YeM
B OTCYTCTBMU gucnepcuoil dasbl. [JA TAaKUX CHCTeM YDaBHEHMA Mpolecca TemIoobMeHa
MOMKHO B3HAYMTEJBHO YHIPOCTHTH, & NPM NOCTOAHHBIX CBoOMcrBax oleux ¢as moaydaerca
COBEpIIEHHO NpoCToe pellleHue. A CUCTeM € HEOZHOPOTHBIMH (U3HYECKMMM CBOMCTBAME
HOJY4eHO pellleHle, MCHOJb3ylolllee MHTEIDUPOBAHME IO TOJIUMHE NOIPAHHYHOTO CJIOA.
Pelenua npuMeHUMH K Pa3BHBAIEMYCHA, A TAKHe MOJHOCTHIO Pa3BHTOMY JIAMMHAPHOMY
MOTPAHMYHOMY CJOK HA ILIOCKON IIIaCTHHE ; PeleHUA TAKKe alllIPOKCUMUPYIOT KapTHHY
TedeHMA B TPyOe mpu yciIoBus GOJBIIOTO IO CPABHEHUIO C TOJIIHHONK IOFPAHHYHOTO CJIOA
paxuyca Tpy6sl. TOT TEOPETUYECKHIl Pe3yIbTAT Y{OBJIETBOPUTEIBHO COTJIACYETCH C BKCITePU-
MEHTAJbHBIMU JaHHeMU. C HeGOJBIIMMM BUIOH3MEHEHHAMU JTOT METO], BEPOATHO, MOMeET
OBITH NpUMEHEeH K TypOYJeHTHOMY TeueHHI0 B MOIDAHMYHOM CJIOe.
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