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Abstract-The process of heat transfer to a two-phase mixture of well-dispersed subliming particles and 
vapor, flowing over a heated surface, is analyzed. It is shown by a laminar boundary layer analysis that, 
when the surface-area per unit volume of the particle (or solid) phase is large enough, the phase change 
dominates the heat-transfer process and hastens the development of the thermal boundary layer. Under 
these conditions, the thermal boundary-layer thickness not only becomes uniform a short distance down- 
stream from the starting point, but also is substantially less than it would be were the particle phase absent. 
For such systems. the equations describing the heat-transfer process can be considerably simplified and, if 
the physical properties of both phases are uniform, a remarkably simple solution results. For systems in 
which the physical properties are not uniform, a solution involving integration across the boundary layer 
is developed. The solutions are applicable to developing, as well as fully developed, laminar boundary 
layers over a flat plate; the solutions also approximate conditions in flow through a tube, provided that the 
tube radius is large compared to the thermal boundary-layer thickness. The predictions of this theoretical 
analysis agree satisfactorily with experimental results. With slight modification, the same approach may 

possibly be applicable for turbulent flow in the boundary layer. 

NOMENCLATURE 

surface area of particle [cm21 ; 
lumped parameter defined by equa- 
tion (38) [cm+] ; 
specific heat of vapor at constant 
pressure [J/g”K] ; 
average particle diameter [cm] ; 
specific internal energy of particle 

[J/g1 ; 
vector drag force on average particle 
[dynl ; 
acceleration due to gravity [cm/s21 ; 
rate of sublimation per unit-volume 

[g/cm3 ~1; 
height above an arbitrary datum 
[cm1 ; 
particle heat-transfer coeffkient 
[W/cm”K] ; 
wall heat-transfer coeffkient (4,/r), 
[W/cm”K] ; 
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specific enthalpy of solid [J/g] ; 
specific enthalpy of vapor [J/g] ; 
specific enthalpy of vapor at satura- 
tion temperature [J/g] ; 
thermal conductivity of vapor at 
vapor temperature [W/cm”K] ; 
thermal conductivity of vapor for 
particle heat transfer [W/cm”K] ; 
thermal conductivity of vapor for wall 
heat transfer [W/cm”K] ; 
distance from the plate to the outside 
of the mechanical boundary layer 

bl ; 
average particle mass [g] ; 
average number of particles per unit 
volume [l/cm31 ; 
particle Nusselt number (hp,/k,,) ; 
pressure [dyn/cm2] ; 
rate of heat transfer to a particle 
w/s1 ; 
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heat-transfer rate per unit area at 
wall [W/cm21 ; 
shape factor for particle surface area ; 
real time [s] ; 
average temperature of the particle 

WI ; 
saturation temperature [“K] ; 
vapor temperature [“K] ; 
tube-wall temperature [“K] ; 
velocity parallel to wall [cm/s] ; 
free-stream velocity [cm/s] ; 
velocity perpendicular to wall [cm/s] ; 
vector velocity of solid [cm/s] ; 
vector velocity of vapor [cm/s] ; 
distance parallel to wall [cm] ; 
distance perpendicular to wall [cm]. 

Greek symbols 
drag coefficient for average particle 

Cg/sl ; 
wall-minus-saturation temperature 
difference (T, - TJ [“K] ; 
fluid mechanical boundary-layer 
thickness [cm] ; 
thermal boundary-layer thickness 
[cm1 ; 
4/&I; 
Y/4; 
YA; 
vapor-minus saturation temperature 
difference (T, - T,) [“K] ; 
heat of vaporization or sublimation 

[J/g1 ; 
vapor viscosity at vapor temperature 

[g/cm ~1 ; 
vapor viscosity related to wall tem- 
perature [g/cm s] ; 
density of mixture [g/cm31 ; 
average mass of particles per unit- 
volume of mixture [g/cm31 ; 
specific density of particles [g/cm31 ; 
average mass of vapor per unit- 
volume of mixture [g/cm31 ; 
specific density of vapor [g/cm31 ; 
stress tensor excluding pressure term 

[dyn/~21 ; 

shear stress at wall [dyn/cm2] ; 
rate of change of phase coefficient 
[g/cm3 SW; 
rate of change of phase coefficient at 
wall [g/cm3 s”K] ; 
conduction heat-transfer rate 
[W/cm21 ; 

INTRODUCTION 

HEAT transfer by forced convection to a mixture 
of evaporating drops and vapor at pressures 
above the triplet point, or to a mixture of 
subliming particles and vapor at pressures 
below the triple point, occurs in many systems, 
such as in mist flow, in drying processes, and in 
venting cryogenic liquids to outer space. The 
original purpose of this investigation was to 
learn more about the heat-transfer character- 
istics of cryogenic propellants vented to outer 
space [l] and to explain quantitatively the ex- 
perimental results of Jones et cd. [2]. Although 
illustrative comments below will be directed to 
a cryogenic mixture of subliming particles and 
vapor, the analytical approach used is quite 
general, and its results should be applicable to 
other engineering systems involving heat trans- 
fer by forced convection to dispersed two-phase 
mixtures. 

Forced convection heat transfer to a gas- 
particle mixture has been studied by Farbar and 
Depew [3], Tien and Quan [4], Edelman [5] 
and others. In general, their work shows that 
the presence of the solid phase enhances the wall 
heat-transfer coefficient when the particle dia- 
meters are less than about 0.01 cm. Change of 
phase, however, has not been considered in any 
previous study. 

FORMULATION OF THE PROBLEM 

To formulate the problem mathematically, 
the conservation equations for both phases must 
be considered. If, however, all factors influencing 
the process were incorporated in the analysis, 
the problem would become mathematically 
intractable. On the other hand, in an uncommon 
system such as the one treated here, it is not 
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prudent to discard a priori a term representing 
the effect of one of the contributing mechanisms, 
unless an order-of-magnitude analysis shows 
that its influence is insignificant. Reference [6] 
presents the details of the calculations under- 
lying the decision whether or not to include 
terms in the mathematical formulation of the 
problem. For cryogenic mixtures, the calcula- 
tions result in the simplifications listed in 
Table 1. (For brevity, these calculations are 
excluded from this paper. For other systems, 
however, it may be desirable to review the order 
of magnitude of certain terms.) To avoid un- 
necessary complications, initial simplifications 1 

through 9, whose justification appeared a 
posteriori almost trivial for cryogenic mixtures, 
are introduced at this stage. 

A thermodynamic function is, in general, 
discontinuous across a phase boundary. Since 
presently available mathematical techniques 
can handle only continuous functions, it was 
necessary to formulate the problem in terms of 
“bulk” properties, i.e. average properties that 
take into account the presence of both phases. 
In conventional terms, this means that the 
conservation equations are derived by postu- 
lating a control-volume for the mixture con- 
taining such a large number of particles that (1) 

Table 1. List ofsimplijications 

Initial simplifications 
1. Two phases are initially in thermal equilibrium. 
2. Radiation heat-transfer is negligible. 
3. Statistical fluctuations in the particle phase density may be averaged. 
4. Rotational kinetic energy of the particle phase is negligible. 
5. Rotational momentum of the particle phase is negligible. 
6. Lift forces on the particles are negligible. 
7. Electrostatic forces are negligible. 
8. Specific density of the particle phase is constant. 
9. Specific density of the particle phase is much greater than specific density of the vapor phase. 

Boundary layer simplifications 
10. The process is steady-state. 
11. Viscous heating is negligible. 
12. Relative motion between phases is negligible, except as it affects particle Nusselt number and particle diffusion. 
13. Gravitational effects are negligible. 
14. The mixture behaves as a Newtonian fluid, with viscosity equal to that of the vapor. 
15. The surface of the particle is at local saturation temperature. 
16. Temperature gradients in the particle are negligible. 
17. Specific heats of the particle and vapor are constant. 
18. Flow is two dimensional. 
19. Boundary-layer approximations are valid. 
20. Pressure gradients are negligible. 
21. Vapor viscosity and thermal-conductivity are constant, 

Integral solution simplifications 
22. Average particle size is uniform. 
23. Average particle numberdensity is uniform. 
24. Free-stream velocity gradients are negligible. 
25. Changes in bulk densities are negligible. 
26. Effects of free-stream turbulence are negligible. 
27. Particle-wall interactions are negligible. 
28. Polynomial approximations of velocity and temperature profiles in boundary layer are valid (necessary for solution). 
29. Two phases are in thermal equilibrium outside the thermal boundary-layer. 
30. Thermal and fluid-mechanical boundary-layers start at the same point. 
31. Particle Nusselt number is constant. 
32. Particle Nusselt number is not affected by mass transfer. 
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particle properties may be treated as continuous pP = Nm. If it is assumed that the equivalent 
functions and (2) statistical fluctuations can be average number of paaicles, as well as the 
averaged. At the same time, the volume can average net mass, is conserved, the conservation- 
conceptually be made arbitrarily small so that of-mass equations for particle and vapor can be 
mathematical derivatives exist. This approach written in the form 
is actually only an extension of the assumption 
usually made in continuum mechanics in which 

(Solid) 

all physical properties are treated as continuous a& Dm 
functions while, in reality, any physical material 

~+v.p,v,-iv-4 
Dt 

(1) 

consists of particles having discrete energy levels. and 

A schematic diagram illustrating the specific 
nrocess treated in this study. as well as some of 

(Vapor) 

the symbols used in the analysis below, are 
shown in Fig. 1. 

Average moss of particles .=m g, 
equivalent number of 
per unit 

0 
0 0 >7 

0 0 0 

o--T, 
Q T Q 

oO&~lg!!lf$” 
” 0 

0 

* Q” 
0 

0 0 0 
0 0 

Specific density of porticles=$ gbrn; 
bulk density of particles 

Specific density of vopor =FV s/cm? 
bulk density of vapor 

(i.e. moss of particles per unit ft.e.moss of vopor per unit 

volume of mixture& g/cm3 volume of mixture)=& g/cm” 

FIG. 1. Schematic of particle-vapor flow, with inanition of some symbols. 

Conservation of mass 
Let N(r, t) be the equivalent average number 

of particles per unit volume. The qualification 
“equivalent” is used to indicate that particle 
identities are not lost. For example, if two 
particles collide and stick together, then the 
number of particles is still counted as two. 
Similarly, if a particle completely sublimes, it is 
still counted as a particle, but its mass is zero. 
The function N is related to the average bulk 
density of the solid phase pP(F, t), and the 
average mass of a particle m according to 

aPv Dm 
x + V.&v, + N- = 0. 

Dt (2) 

Conservation of momentum 
The forces between the two phases result from 

their relative motion. To evaluate these forces, 
it is convenient to define an average particle- 
drag coefficient j3 according to the equation 

&CrnvJ = /3(v, - vp) - mgVh. (3) 

Expanding the substantial derivative in the fore- 
going equation and using the definition of pP 
given above yields the conservation-of-momen- 
tum equation for the solid phase 
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(Solid) is uniform ; thus, extending equation (8) to N 
particles per unit volume yields the conservation- 

BN(v, - VP) + p@h = 0. 
of-energy equation for the solid phase 

(Solid) 

(4) 

It is possible, as shown in detail in [6], to 
+ ;f! hp(Tu - T,) = 0. 

P P 

derive a similar conservation-of-momentum (9) 
equation for the mixture. When the conserva- 
tion-of-momentum equation for the solid or where the term 6s/D, corresponds to the ratio 

particle phase is subtracted from it, the con- of particle area to volume. The conservation 

servation of momentum for the vapor phase is equation for the vapor is derived by obtaining 

found to be a conservation equation for the mixture and 

(Vapor) 
subtracting from it equation (9). After some re- 
arrangement, this yields 

p” gf - V”N g + /?N(V” - VP) 
(Vapor) 

+Vp-V.r*+gp,Vh=O. (5) 
N 2 {ova . v, - vp . vp) - W, - Ho,)) 

Conservation of energy DH Dp 

If we define an average particle heat transfer 
+;;h,(7:- T,)+P+‘-~ 

P P 

coefficient h, and an average specific particle 
density fiP for the solid phase and assume that 
each particle is sufficiently regular so that its 

- N/3(V” - VP). (V” - VP) - 2*. vv, 

surface area is proportional to its volume to - V(k”V7J = 0. (10) 
the two-thirds power, as in a sphere, the surface 
area of a particle is It should be noted that the conservation equa- 

3 
tions are coupled with the change-of-phase 

A, = (36~)* s F , (I (6) 
term N(dm/dt). Moreover, although no relative- 

\ypl motion terms appear in the equations because 

where s is a particle-shape factor equal to unity 
their order of magnitude is negligible, the value 

for a sphere. The rate of heat transfer between a 
of h, (the particle heat-transfer coefficient) still 

particle and the surrounding vapor is given by 
depends on the relative motion between the two 
phases. 

0, = (36+ s ; ’ h,(x - T,). 
0 

(7) 
BOUNDARY-LAYER APPROXIMATIONS 

Since heat transfer to a particle causes sublima- 
tion, as well as a change in the internal energy 

Numerical solutions of equations (l), (2) (4) 

of the solid, conservation of energy demands that 
(5), (9), and (10) would be complicated and 
require prohibitive computer time. Instead, 

lDm DE, 
E-rnx-+(36n)‘s h&T, - T,) = 0. 

analytical solutions will be formulated by means 
of the boundary-layer integral method [8-lo]. 

(8) 
To use this method simplifications 10 through 
21 in Table 1 are introduced, and equations (l), 

The internal energy term can be replaced by the (2), (4), (5), (9), and (10) simplify respectively to 
enthalpy of the solid, because the solid density 

_ ___ 
the following boundary-layer forms : 
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Conservation of mass 
(Solid) 

and 
(Vapor) 

ii (p,u) + $ (p,v) - G = 0 (11) PUCP”U$ + p.c,,vg$ + ;$h,(7;, - T,) 
P P 

and 
(Vapor) 

&u) + $(p,l;i + G = 0. (12) 

Conservation of momentum 
(Solid) 

(13) 

and 
(Vapor) 

2 

p”ug + ,“v~ - uG - p2 
ay ay2 

= 0. (14) 

Conservation of energy 
(Solid) 

6s P -?hh,(T,- T,)+AG=O 
DPPP 

(15) 

Uniform distribuhon 

I 

of particles in the 

0 Y direction 

- cpv(Tv - T,) G - I$$ = 0. (16) 

The coupling term between equations (11) 
through (16) is G, the rate of sublimation per 
unit volume. This term is given explicitly by 
Equation (15). 

To proceed with the integral method and 
integrate across the boundary layers, simplilica- 
tions 22 through 32 are introduced. The process 
can then be visualized as shown schematically 
in Fig. 2. In this figurethe vertical scale has been 
greatly expanded. For the cryogenic mixture 
under consideration here, order-of-magnitude 
dimensions are 50 cm for the horizontal length, 
@ 1 cm for the thermal boundary-layer thickness, 
0.25 cm for the mechanical boundary-layer 
thickness, 0403 cm for the particle diameter, 
and 0.03 cm for the distance between particle 
centers. Thus, the thermal boundary-layer thick- 
ness is about three times greater than the 
distance between particles. 

Free streom 
velocity =U 
temperature = < 

Fluid-mechanical 
boundary-layer 
thickness \ , ll.zllllYl \ 

0 boundary-layer---\ / 

Temperature 
profile \ 

Velocity 
(profile 

. 
1 w / I I I 

Uniform 
heat flux, q, 

Jw --+ 

FIG. 2. Boundary-layer model 
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Integral equations Substituting from equations (18) and (19) for 
With Leibnitz’s rule for differentiation of the second and third terms in equation (21), and 

integrals, equation (12) can be partially inte- changing the limits to 0 to 6, (since the integrals 
grated with respect to y to give from 6, to 1 are zero) yields the momentum 

I 1 integral equation 

0 0 

Also, with the addition of the two conserva- 
tion-of-mass equations [equations (11) and (12)] 
and with partial integration, one can verify that 

P,U dy + ptv(l) = 0, (18) 

where 1 is the perpendicular distance from the 
flat plate to some point outside both the fluid- 
mechanical and thermal-boundary layers. 

Two additional equations may be obtained 
from the sum of equations (11) and (12) and 
also from equation (12) by multiplying these 
equations by u and cPvTv, respectively, and 
integrating. This procedure results in 

Jip,u;dy + /,,dv = 0 (19) 

0 0 

1 

+ c,,T,G dy = 0. (20) 

(22) 

For conservation of energy, adding and inte- 
grating equations (15) and (16) yields 

1 I 

c a 
pvcpvu ax dy + P,C,J@ T, - s ~vcpvT0 du 

0 0 

1 1 

- 
s s 

1G dy - c,,(T, - T,) G dy = q,,,. (23) 

0 0 

Substituting from equations (17) and (20) for 
the second and third terms in equation (23), and 
changing the limits to 0 to S, (since the integrals 
from 6, to I are zero) yields the energy integral 
equation 

dt dt 

4, = & pvc,,u6 dy + 
s 

429 dy, (24) 

0 0 

where 

0 

Adding and integrating the conservation-of- 
The term C#I is the coefficient of rate of change- 

momentum equations [equations (13) and (14)] 
of-phase, i.e; the rate of change-of-phase per unit 

gives 
volume and per unit of temperature difference 
between the vapor and particles. 

I 1 

s 

au 
wj+ + ptuv(0 - 

I 
ptu dv 

POLYNOMIAL APPROXIMATIONS 

The choice of polynomials with which to 
0 0 

au 
approximate the velocity and temperature pro- 

= 
-PU+%!& Y=o’ 

t21~ files is to some extent arbitrary. Fourth-degree 
polynomials satisfy the boundary conditions 
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very well, but a relatively complicated solution 
ensues in which the coefficients of the tempera- 
ture polynomials are functions of the thermal 
boundary-layer thickness. However, if third- 
degree polynomials are used, one obtains 
remarkably simple solutions. 

The boundary conditions to be satisfied are : 

u(0) = 0, u(0) = 0, u(6,) = u, g = 0, 
6, 

e(0) = r, l9(S,) = o,!$ = 0, 
& 

and??% =O* 
w dt ’ 

these conditions yield polynomial approxima- 
tions for the velocity and temperature distri- 
butions, 

(Velocity) 

u 35 t3 -=_-- 
u 2 2 

(26) 

and 
(Temperature) 

e 
- = 1 - 3q + 312 - r/3 
r 

(27) 

where r = y/6, and q = y/6, 
From equation (27) the heat-transfer co- 

efficient is related to the thermal boundary- 
layer thickness according to the relation 

which shows that a solution for 6, also yields a 
direct solution for h,. Substituting the poly- 
nomial approximation for velocity [equation 
(26)] in the momentum integral equation [equa- 
tion (22)] results in 

x (1 -;+;)dy. (29) 

Performing the indicated operations and 
replacing the partial derivative by a total 
derivative gives 

140 h d4n -- 
dx 136, pJJ’ 

(30) 

The velocity and temperature polynomial 
approximations [equations (26) and (27)] can 
be substituted in the energy integral equation 
[equation (24)] to yield 

at 

+3rj2-q3)dy+ 4+- 
s 

6z%v (1 - 31 
“W 

0 

+ 3~~ - Y/~) dy. (31) 

Performing the indicated operations, dividing 
by q,,,, and replacing the partial derivative by a 
total derivative gives 

where 
(32) 

(33) 

If the thermal boundary-layer thickness is less 
than the fluid-mechanical boundary-layer thick- 
ness it may be assumed that c < 1; then 

&i2Q$. 

Dropping the negligible term in equation (32) 
and using the chain rule for differentiation 
finally gives 

ds,_ 6, da,,, 40 k,, 6, 10 WV ---_P 
dx - 36,dx + ?-p,c,,Ud: 9 pocpcu 6m. 

(35) 



It is evident from equations (30) and (35) that 
the gradients of the boundary layers are in- 
determinate at x = 0 because 6,(O) = 0; thus 
numerical integration cannot be started at 
x = 0. Use of L’Hospital’s rule, however, 
shows that, when x -+ 0, the fourth term in 
equation (35) goes to zero, whereas the other 
three terms go to infinity. Also, if one neglects 
variations in viscosity near x = 0, equation (30) 
can be integrated to obtain 6, as 

280 ~l,~+x * 

6m = (13 p,U) ’ 
x + 0. (36) 

Substituting 6, from equation (36) and d&,,/dx 
from equation (30) into equation (35) gives 

x + 0, (37) 

where 

A, = 61.6 u,, * k”, 

P”CP”LJ PJJ * 
(38) 

Equation (37) is a form of Bernoulli’s equation, 

and can be reduced to a linear ordinary- 
differential equation by forming the derivative of 
6:/x+. 

Integration then yields for small values of x 

6, = x+(3A#, x --) 0. (39) 

Equations (36) and (39) can now be used to 
obtain values of 6, and 6, approaching x = 0. 
These values of 6, and 6, serve as starting values 
for numerical integration of equations (30) and 

(35). 

SOLUTIONS 

Numerical solutions of equations (30), (35), 
(36) and (39) to determine the shape and relative 
magnitudes of 6, and 6, were obtained by 
Simpson [6] using the Adams-Moulton pre- 
dictor-corrector method ; a typical solution is 
shown in Fig. 3. The thermal boundary-layer 
thickness becomes almost constant a few centi- 
meters from the start of the boundary layers. 
(The slight rate of growth of the thermal bound- 
ary layer appears to have been caused in this 
case by the incorporation in the integration 
procedure of variations of fluid properties along 

HEAT AND MASS TRANSFER IN TWO-PHASE SINGLE-COMPONENT FLOW 1149 

- 0.16 

layer thickness by 
integration solution 

Saturation 

-0.06 k 
0” 

Wall heat-transfer T 

rate = 0.413 W/cm2 -0.06 ? 
z 
5 

-0.04 p 

Distance from start of boundary layers, cm 

FIG. 3. Typical integration-solution for nitrogen. 
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the boundary layer.) This suggests that the first 
term (dbddx) in equation (35) is negligible for 
large values of x. 

The integration solution also shows that 
6, < 6, for large values of x. Consequently, the 
second term in equation (35) can be expected 
to be negligible for large values of x. 

Equating the third and fourth terms in equa- 
tion (35) to zero yields the asymptotic solution. 
It can easily be verified that the terms 6,, pc cpV 
and U cancel and 

X > 10. (40) 

Substituting the results of equation (40) and 
the defmition of 4 from equation (25) into 
equation (28) and using the definition of the 
particle Nusselt number (NNup = h$,/k,,) gives 

t 
, x > 10. (41) 

Note that the particle Nusselt number asymp- 
totically approaches 2.0 as the relative motion 
between the phases goes to zero [8]. The 
asymptotic limit of the particle Nusselt number 
of 2.0 for zero relative motion between phases 
seems reasonable since the Nusselt number for a 
sphere in pure conduction can be calculated to 
be 2.0. 

Numerical values of the heat-transfer co- 
efficient at the wall calculated using the integra- 
tion and the asymptotic solutions were com- 
pared by Simpson [6] and found to differ by 
less than one per cent for x greater than 10 cm. 
This implies, for the cases studied, the validity 
of the assumptions that the first and second 
terms in equation (35) are negligible for x > 10 ; 
it also implies that the thermal boundary layer 
rapidly becomes fully developed, i.e. in about 
five tube diameters. 

The absence of 6, and U in the asymptotic 
solution suggests that convection heat transfer 
is not an important factor when the thermal 
boundary layer is fully developed. Thus, the 

mechanism should correspond closely with that 
of heat transfer to a stagnant mixture. A stagnant 
mixture is defined as having zero velocity 
parallel to the wall, but also, due to generation of 
vapor, having its interface move perpendicular 
to the wall. Partial derivatives with respect to 
time do not appear in the integration and 
asymptotic solutions, since steady-state con- 
ditions exist. Thus, in order that the stagnant- 
model solution can correspond with the inte- 
gration and asymptotic solutions, steady-state 
conditions must be imposed on the stagnant 
model. This corresponds to a physical situation 
in which a large proportion of the heat trans- 
ferred to the stagnant mixture is absorbed by 
the change in phase, only a small quantity of 
heat goes to raise the temperature of the vapor 
and its rate of increase may be neglected. From 
equations (2) and (lo), the stagnant model is 
described in two dimensions by the following 
relationships : 

$=; &+“), (42) 

dlCI 
dy- - - p,c,v$ - @(A + cpvQ (43) 

and 

de II/ 
dy=-k, 

Because equations (42), (43) and (44) are less 
complicated than those leading to the integra- 
tion and asymptotic solutions, it is feasible to 
include in the analysis the variation of physical 
properties with temperature across the boundary 
layers. If, however, the simplifications used for 
the integration and asymptotic solutions are 
applied to the stagnant model, then integration 
of equation (43) yields 

qw = - i$endy, 

where 6, is now the distance from the wall to 
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the nearest point in the mixture at which the 
vapor is essentially at the saturation temperature. 

The boundary conditions and temperature 
polynomial profile for the integration and 
asymptotic solutions may also be applied to the 
stagnant model by substituting equation (27) 
into equation (45) to eliminate 8. Integration of 
the resulting equation yields solutions identical 
to the asymptotic solutions, i.e. equations (40) 
and (41). This shows that, if the same approxi- 
mations are introduced in both cases, the 
asymptotic and stagnant-model solutions are 
identical. One can, therefore, conclude (1) that 
in the fully developed thermal boundary layer, 
conduction and convection perpendicular to the 
wall are the major modes of heat transfer, and 
(2) that convection heat transfer due to motion 
parallel to the wall is insignificant. Furthermore, 
inspection of equation (45) reveals that all of the 
heat transferred from the wall to the fluid is 
absorbed by the change in phase. 

In the preceding analysis, the fluid properties 
were assumed uniform across the boundary 
layer. Equations (42)+4), however, can be 
solved numerically with fluid properties evalu- 

ated at the local vapor temperature at each step 
of the integration. The boundary conditions 
for the numerical calculations are then 

v(O) = 0, 4W) = -4W WV = 0, 

W - = 
dy o 

-vu + CJ). 

Figure 4 shows a typical comparison of the 
temperature profiles across the boundary layer 
for the stagnant (with variable properties) and 
the asymptotic solutions. In this case the thermal 
boundary layer was fully developed, and the 
integration and asymptotic solutions were almost 
identical. Fluid properties for the asymptotic 
solution were evaluated at the arithmetic mean 
of the wall and saturation temperatures. Maxi- 
mum difference in the vapor temperatures 
predicted by the two methods is about 15 per 
cent of the wall-minus-saturation temperature 
difference ; the wall heat-transfer coeflicient 
according to the stagnant solution is about 15 per 
cent less than that predicted by the asymptotic 
solution. 

Results of experimental work performed at 

and lntegratlon solutlons; 
temperature proflle opproxtmated 
by third-degree polynomial and 
fluld properties assumed constant 
across thermal boundary- layer 

Vapor temperature by 
stagnant-model solution; 
quasi steady-state conditions 

med, but fluid properties 
as function of temperature 

solution =0,09 

Conduction heat-tro 

Distance from wall, cm 

FIG. 4. Typical boundary-layer profiles for nitrogen for a particle Nusselt number of 2.4, shape 
factor of 1.6. and dia. * 18 urn. 



1152 A. U. SIMPSON, K. D. TIMMERHAUS, F. KREITH and M. C. JONES 

the National Bureau of Standards, Boulder, The solutions presented in this study, while 
Colorado, have been compared with the inte- giving good order of magnitude agreement with 
gration, asymptotic, and stagnant-model solu- experimental results, are not able to account 
tions [6]. Comparisons of experimental wall for a trend with wall temperature. The most 
heat-transfer coefftcients with those calculated likely explanation of this is that with increasing 
by means of the asymptotic solution are shown wall temperature the particle surface area per 
in Figs. 5 and 6 for nitrogen and hydrogen, unit volume adjacent to the wall is reduced below 
respectively. Each individual point on Figs. 5 that which pertains in the free stream. A com- 
and 6 represents an experimental run. The plete discussion of this and full account of 
ranges of key experimental variables are given exnerimental results will be contained in another 
in Table 2. - paper [lo]. 

, / 

loo 200 300 

Experimental wall temperature. OK 

FIG. 5. Heat-transfer ratto vs. wall temperature at 56 cm 
from orifice for nitrogen for a particle Nusselt number of 
2.4, shape factor of 1.6, and diameter - 18 pm. Each in- 
dividual point represents an experimental run with nitrogen. 
The ranges of key variables for the runs am given in Table 2. 

+ 

Experimental wall temperature. “K 

FIG. 6. Heat-transfer ratio vs. wall temperature at 41 cm 
from orifice for hydrogen for a particle Nusselt number of 
2.4. shape factor of 1.7, and diameter ~37 urn. Each in- 
dividual point represents an experimental run with hydrogen. 
The ranges of key variables for the runs are given in Table 2. 
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Table 2. Range of experimental variables 

Variable 
Nitrogen Hydrogen 

Min. Max. Min. Max. 

Mixture flow rate, g/s 2.66 4.65 0.19 1.17 
Pressure in tube, mm Hg 7.5 46.3 9.0 25.2 
Wall heat flux, W/cm2 0.105 0.672 0.115 1.267 

For a rigorous demonstration of the validity 
of the solutions for a specific system, it is necess- 
ary to justify each of the simplifications listed 
in Table 1 by order-of-magnitude analyses. A 
less rigorous but simpler method is to calculate 
the wall heat-transfer coefficient for the vapor 
alone and compare it with the asymptotic 
solution. If the asymptotic solution yields a 
wall heat-transfer coefficient significantly greater 
(e.g. a factor of two or more) than that for the 
vapor alone, then change-of-phase dominates 
the heat-transfer process, and the solutions 
presented here would most likely provide 
reasonable results. 

In general, the solutions, discussion and 
conclusions apply to laminar boundary layers. 
If, however free-stream turbulence is significant, 
particles from the free stream tend to diffuse 
into the boundary layer. It is believed for such 
turbulent boundary layers the solutions pre- 
sented above may still be applicable, but will 
tend to underpredict the wall heat transfer 
coefficient. 

CONCLUSIONS 

The analyses and forms of the solutions 
discussed in this paper are summarized in the 
following conclusions : 

The thermal boundary layer rapidly reaches 
an almost constant value and the wall 
heat-transfer coeflicient is considerably 
greater for a mixture of subliming particles 
and vapor than for the vapor alone. 
When the thermal boundary layer becomes 

fully developed, essentially all of the heat 
transferred from the wall to the mixture 
of subliming particles and vapor is absorbed 
by the change in phase. The reason for this 
simple energy balance is that, although 
heat transfer also raises the temperature 
of the generated vapor from the saturation 
temperature to the local vapor temperature, 
convection heat transfer away from the 
wall by the generated vapor exactly balances 
the heat absorbed by the generated vapor ; 
thus, the two terms cancel and do not 
appear in the solutions. 

The dominant modes of heat transfer 
in the fully developed thermal boundary 
layer are conduction and convection away 
from the wall ; convection heat transfer due 
to motion parallel to the wall is not 
significant. 

The wall heat-transfer coefficient in the 
fully developed thermal boundary layer 
is directly proportional to the surface area 
of the particles and, therefore, inversely 
proportional to particle size for a given 
particle bulk density. 

In the fully developed thermal boundary 
layer the local heat-transfer characteristics 
depend on the local fluid properties and 
do not involve the history of the process 
up to that point. Thus, even though fluid 
properties in planes parallel to the wall 
were assumed to be uniform in the develop- 
ment of the solutions, some variation of 
properties should not affect the results 
significantly. 
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R&urn&-On analyse le processus de transport de chaleur vers un melange a deux phases de particules 
bien dispersees et en train de se sublimer et de vapeur s’ecoulant sur une surface chauffee. On montre par 
une analyse du type couche limite que, lorsque la surface par unite de volume de la phase particulaire 
(ou solide) est assez grande, le changement de phase domine le processus de transport de chaleur et hate 
le developpement de la couche limite thermique. Sous ces conditions, non seulement I’epaisseur de la 
couche limite thermique devient uniforme a une courte distance en aval du point de depart mais egalement 
est considerablement moindre qu’elle devrait etre si la phase particulaire etait absente. Pour de tels systemes, 
les equations decrivant le processus de transport de chaleur peuvent &tre considerablement simplifiees 
et, si les propribtis physiques des deux phases sont uniformes, il en rbulte une solution remarquablement 
simple. Pour des systemes dans lesquels les proprietb physiques ne sont pas uniformes, on expose une 
solution impliquant une integration a travers la couche limite. Les solutions sont applicables a des couches 
limites laminaires sur une plaque plane, en train de s’ttablir aussi bien qu’a celles entibrement Ctablies; 
les solutions s’approchent aussi des conditions de l’bcoulement a travers un tube, pourvu que le rayon du 
tube soit grand par rapport a l’tpaisseur de la couche limite thermique. Les previsions de cette analyse 
theorique sont en accord satisfaisant avec les resultats experimentaux. La meme mbhode peut &tre applicable 

avec une ltgbre modification a l’&coulement turbulent dans la couche limite. 

Zusammenfassung-Der Wkneiibergang von einer beheizten Oberflache an ein Zweiphasengemisch aus 
gut verteilten sublimierenden Teilchen und Dampf wird analysiert. Es wird mit Hilfe laminarer Grenz- 
schichtanalyse gezeigt, dass bei gentigend grosser Oberflache pro Einheitsvolumen des Teilchens (oder 
Festkorpers) die PhasenZinderung den Warmetibergangsvorgang bestimmt und die Entwicklung der 
thermischen Grenzschicht beschleunigt. Unter diesen Umst%nden wird die Dicke der thermischen 
Grenzschicht in geringer Entfemung stromabwlrts vom Ausgangspunkt nicht nur gleichformig, sondem 
sie ist such wesentlich geringer als bei fehlender Festphase. Fur solche Systeme kiinnen die Gleichungen 
fiir den Warmetibergang stark vereinfacht werden und bei einheitlichen Stoffwerten der beiden Phasen 
ergibt sich eine sehr einfache L&sung. Fur Systeme in welchen die physikalischen Eigenschaften nicht 
einheitlich sind, wird eine Losung mit einer Integration iiber die Grenzschicht entwickelt. Die Losungen 
lassen sich anwenden, sowohl auf sich ausbildende als such auf voll ausgebildete laminare Grenzschichten 
an einer ebenen Platte; die Lijsungen gelten angeniihert such fiir Rohrstrijmungen unter der Voraussetzung, 
dass der Rohrradius gross gegen die thermische Grenzschichtdicke ist. Die theoretischen Berechnungen 
stimmen zufriedenstellend mit den experimentellen Ergebnissen tiberein. Mit geringen Anderungen . - ..- . . . *. . 
kiinnte miiglicherweise die Methode such auf turbulente Strijmung m der tirenzschicnt angewanat weraen 
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AEHOTaq#in-npOBeAeH aHam npoqecca TeIIJIOO6MeHa IIpIl ObTeKaHHH HarpeTOti nosepx- 

HOCTAAByX~a3HOZtCMeCbH)TOHKORIlCnepCHbIXcy6JIHMIIpyH)~IIXYacTBqIInapa.npHaHann3e 

JIaMMHapHOrO nOrpaHWIHOr0 CJIOH IIOKaaaHO,qTO, KorHa IlJlOllJaRb IIOBepXHOCTkI Ha eAHHHqy 

o65ehfa sacT~q(nn~TBep~o~~a3bI)~ocTaTo~Ho~e~~Ka,(Pa30BbIenpeBpa~eHaanpeo6na~aloT 
HaA npoqeccam TeIIJIOO6MeHaH ~cKo~RIOT~~~BL~TH~ TeIIJfOBOrO IIOrpaHWIHOrO CJIOH. B BTHX 

yCJIOBHRX TOJIqllHa TeIIJIOBOrO IIOrpaHWIHOrO CJIOH CTaHOBLlTCFI nOCTOf?HHOti Ha He6OnbmOM 

paCCTORHLlI4 II0 Te4eHHKl OT HaqaJIbHOfi TOVKII, ItpH 9eM 3TOT CJIOfi 3HaWITeJIbHO TOHbUIe,YeM 

B OTCyTCTBllll ALiCIlepCHOt I#Ia3bI. 2JIR TaKBX CHCTeM ypaBHeHMH IIpOqeCCa TennOO6MeHa 

MOH(H0 3Ha9HTeJlbHO YOpOCTLiTb, a np51 II~CTORHH~IX cBoticTBax 06eAx @a3 OonysaeTcfi 

COBepILIeHHO IIpOCTOe peL"eHPIe. &PI CMCTeM c HeORHOpO2HbIMEI @131IYeCKHMLI CBOffiCTBaMIl 

nonyqeao peureme, mnonb3ymqee HHTerpnpoBame no Tonrqme norpamiworo CJIOR. 

PeIIIeHHH OpllMeHLlMbI K pa3BHBaKJ~eMyCR, a TaKWe IIOJIHOCTbKl pa3BLITOMy JIaMLlHapHOMy 

IIOrpaHHqHOMy CJIOIO Ha IIJIOCKOti IIJIaCTPIHe; peIIIeHHH TaKFKe aIIOpOKCMM&ipyIOT KapTIIHy 

TeqeHMH B Tpy6e npn ~CJIOBHH 6onbmoro no CpaBHeHmo c TOJIIQHHO~~ nOrpaHwiKOr0 CJIOR 

pa~~yca~pyFbI.3~0~TeOpeTa~ecK~I~pe3ynbTaTy~OBneTBOp~TenbHO cor.nacyeTcKcaKcnepw 

MeHTaJIbHbIMH AaHHbIMH. c He6OJIbILIHMH B~I~OH3MeHeHLIRMII 3TOT MeTOa, BepORTHO, MOHFeT 

6hITb IIpIJMeHeH K Typ6yJIeHTHOMyTeqeHIIIO B IIOrpaHWIHOM CJIoe. 


